Extensions 1→N→G→Q→1 with N=C8⋊S3 and Q=C22

Direct product G=N×Q with N=C8⋊S3 and Q=C22
dρLabelID
C22×C8⋊S396C2^2xC8:S3192,1296

Semidirect products G=N:Q with N=C8⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C8⋊S31C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out C8⋊S3248+C8:S3:1C2^2192,1331
C8⋊S32C22 = D84D6φ: C22/C1C22 ⊆ Out C8⋊S3488-C8:S3:2C2^2192,1332
C8⋊S33C22 = D85D6φ: C22/C1C22 ⊆ Out C8⋊S3488+C8:S3:3C2^2192,1333
C8⋊S34C22 = D86D6φ: C22/C1C22 ⊆ Out C8⋊S3488-C8:S3:4C2^2192,1334
C8⋊S35C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out C8⋊S3488-C8:S3:5C2^2192,1335
C8⋊S36C22 = D24⋊C22φ: C22/C1C22 ⊆ Out C8⋊S3488+C8:S3:6C2^2192,1336
C8⋊S37C22 = C24.C23φ: C22/C1C22 ⊆ Out C8⋊S3488+C8:S3:7C2^2192,1337
C8⋊S38C22 = C2×Q83D6φ: C22/C2C2 ⊆ Out C8⋊S348C8:S3:8C2^2192,1318
C8⋊S39C22 = C2×D4.D6φ: C22/C2C2 ⊆ Out C8⋊S396C8:S3:9C2^2192,1319
C8⋊S310C22 = SD1613D6φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:10C2^2192,1321
C8⋊S311C22 = D815D6φ: C22/C2C2 ⊆ Out C8⋊S3484+C8:S3:11C2^2192,1328
C8⋊S312C22 = C2×D8⋊S3φ: C22/C2C2 ⊆ Out C8⋊S348C8:S3:12C2^2192,1314
C8⋊S313C22 = D813D6φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:13C2^2192,1316
C8⋊S314C22 = C2×Q16⋊S3φ: C22/C2C2 ⊆ Out C8⋊S396C8:S3:14C2^2192,1323
C8⋊S315C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:15C2^2192,1327
C8⋊S316C22 = D811D6φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:16C2^2192,1329
C8⋊S317C22 = C2×S3×M4(2)φ: C22/C2C2 ⊆ Out C8⋊S348C8:S3:17C2^2192,1302
C8⋊S318C22 = C2×D12.C4φ: C22/C2C2 ⊆ Out C8⋊S396C8:S3:18C2^2192,1303
C8⋊S319C22 = M4(2)⋊26D6φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:19C2^2192,1304
C8⋊S320C22 = S3×C8○D4φ: C22/C2C2 ⊆ Out C8⋊S3484C8:S3:20C2^2192,1308
C8⋊S321C22 = C2×C8○D12φ: trivial image96C8:S3:21C2^2192,1297
C8⋊S322C22 = M4(2)⋊28D6φ: trivial image484C8:S3:22C2^2192,1309

Non-split extensions G=N.Q with N=C8⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
C8⋊S3.C22 = SD16.D6φ: C22/C1C22 ⊆ Out C8⋊S3968-C8:S3.C2^2192,1338
C8⋊S3.2C22 = D8.10D6φ: C22/C2C2 ⊆ Out C8⋊S3964-C8:S3.2C2^2192,1330
C8⋊S3.3C22 = D12.30D4φ: C22/C2C2 ⊆ Out C8⋊S3964C8:S3.3C2^2192,1325

׿
×
𝔽